출처: https://learnxinyminutes.com/docs/python/


# Single line comments start with a number symbol. """ Multiline strings can be written using three "s, and are often used as comments """ #################################################### # 1. Primitive Datatypes and Operators #################################################### # You have numbers 3 # => 3 # Math is what you would expect 1 + 1 # => 2 8 - 1 # => 7 10 * 2 # => 20 35 / 5 # => 7 # Division is a bit tricky. It is integer division and floors the results # automatically. 5 / 2 # => 2 # To fix division we need to learn about floats. 2.0 # This is a float 11.0 / 4.0 # => 2.75 ahhh...much better # Result of integer division truncated down both for positive and negative. 5 // 3 # => 1 5.0 // 3.0 # => 1.0 # works on floats too -5 // 3 # => -2 -5.0 // 3.0 # => -2.0 # Note that we can also import division module(Section 6 Modules) # to carry out normal division with just one '/'. from __future__ import division 11 / 4 # => 2.75 ...normal division 11 // 4 # => 2 ...floored division # Modulo operation 7 % 3 # => 1 # Exponentiation (x to the yth power) 2 ** 4 # => 16 # Enforce precedence with parentheses (1 + 3) * 2 # => 8 # Boolean Operators # Note "and" and "or" are case-sensitive True and False # => False False or True # => True # Note using Bool operators with ints 0 and 2 # => 0 -5 or 0 # => -5 0 == False # => True 2 == True # => False 1 == True # => True # negate with not not True # => False not False # => True # Equality is == 1 == 1 # => True 2 == 1 # => False # Inequality is != 1 != 1 # => False 2 != 1 # => True # More comparisons 1 < 10 # => True 1 > 10 # => False 2 <= 2 # => True 2 >= 2 # => True # Comparisons can be chained! 1 < 2 < 3 # => True 2 < 3 < 2 # => False # Strings are created with " or ' "This is a string." 'This is also a string.' # Strings can be added too! "Hello " + "world!" # => "Hello world!" # Strings can be added without using '+' "Hello " "world!" # => "Hello world!" # ... or multiplied "Hello" * 3 # => "HelloHelloHello" # A string can be treated like a list of characters "This is a string"[0] # => 'T' # You can find the length of a string len("This is a string") # => 16 # String formatting with % # Even though the % string operator will be deprecated on Python 3.1 and removed # later at some time, it may still be good to know how it works. x = 'apple' y = 'lemon' z = "The items in the basket are %s and %s" % (x, y) # A newer way to format strings is the format method. # This method is the preferred way "{} is a {}".format("This", "placeholder") "{0} can be {1}".format("strings", "formatted") # You can use keywords if you don't want to count. "{name} wants to eat {food}".format(name="Bob", food="lasagna") # None is an object None # => None # Don't use the equality "==" symbol to compare objects to None # Use "is" instead "etc" is None # => False None is None # => True # The 'is' operator tests for object identity. This isn't # very useful when dealing with primitive values, but is # very useful when dealing with objects. # Any object can be used in a Boolean context. # The following values are considered falsey: # - None # - zero of any numeric type (e.g., 0, 0L, 0.0, 0j) # - empty sequences (e.g., '', (), []) # - empty containers (e.g., {}, set()) # - instances of user-defined classes meeting certain conditions # see: https://docs.python.org/2/reference/datamodel.html#object.__nonzero__ # # All other values are truthy (using the bool() function on them returns True). bool(0) # => False bool("") # => False #################################################### # 2. Variables and Collections #################################################### # Python has a print statement print "I'm Python. Nice to meet you!" # => I'm Python. Nice to meet you! # Simple way to get input data from console input_string_var = raw_input( "Enter some data: ") # Returns the data as a string input_var = input("Enter some data: ") # Evaluates the data as python code # Warning: Caution is recommended for input() method usage # Note: In python 3, input() is deprecated and raw_input() is renamed to input() # No need to declare variables before assigning to them. some_var = 5 # Convention is to use lower_case_with_underscores some_var # => 5 # Accessing a previously unassigned variable is an exception. # See Control Flow to learn more about exception handling. some_other_var # Raises a name error # if can be used as an expression # Equivalent of C's '?:' ternary operator "yahoo!" if 3 > 2 else 2 # => "yahoo!" # Lists store sequences li = [] # You can start with a prefilled list other_li = [4, 5, 6] # Add stuff to the end of a list with append li.append(1) # li is now [1] li.append(2) # li is now [1, 2] li.append(4) # li is now [1, 2, 4] li.append(3) # li is now [1, 2, 4, 3] # Remove from the end with pop li.pop() # => 3 and li is now [1, 2, 4] # Let's put it back li.append(3) # li is now [1, 2, 4, 3] again. # Access a list like you would any array li[0] # => 1 # Assign new values to indexes that have already been initialized with = li[0] = 42 li[0] # => 42 li[0] = 1 # Note: setting it back to the original value # Look at the last element li[-1] # => 3 # Looking out of bounds is an IndexError li[4] # Raises an IndexError # You can look at ranges with slice syntax. # (It's a closed/open range for you mathy types.) li[1:3] # => [2, 4] # Omit the beginning li[2:] # => [4, 3] # Omit the end li[:3] # => [1, 2, 4] # Select every second entry li[::2] # =>[1, 4] # Reverse a copy of the list li[::-1] # => [3, 4, 2, 1] # Use any combination of these to make advanced slices # li[start:end:step] # Remove arbitrary elements from a list with "del" del li[2] # li is now [1, 2, 3] # You can add lists li + other_li # => [1, 2, 3, 4, 5, 6] # Note: values for li and for other_li are not modified. # Concatenate lists with "extend()" li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6] # Remove first occurrence of a value li.remove(2) # li is now [1, 3, 4, 5, 6] li.remove(2) # Raises a ValueError as 2 is not in the list # Insert an element at a specific index li.insert(1, 2) # li is now [1, 2, 3, 4, 5, 6] again # Get the index of the first item found li.index(2) # => 1 li.index(7) # Raises a ValueError as 7 is not in the list # Check for existence in a list with "in" 1 in li # => True # Examine the length with "len()" len(li) # => 6 # Tuples are like lists but are immutable. tup = (1, 2, 3) tup[0] # => 1 tup[0] = 3 # Raises a TypeError # You can do all those list thingies on tuples too len(tup) # => 3 tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6) tup[:2] # => (1, 2) 2 in tup # => True # You can unpack tuples (or lists) into variables a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3 d, e, f = 4, 5, 6 # you can leave out the parentheses # Tuples are created by default if you leave out the parentheses g = 4, 5, 6 # => (4, 5, 6) # Now look how easy it is to swap two values e, d = d, e # d is now 5 and e is now 4 # Dictionaries store mappings empty_dict = {} # Here is a prefilled dictionary filled_dict = {"one": 1, "two": 2, "three": 3} # Look up values with [] filled_dict["one"] # => 1 # Get all keys as a list with "keys()" filled_dict.keys() # => ["three", "two", "one"] # Note - Dictionary key ordering is not guaranteed. # Your results might not match this exactly. # Get all values as a list with "values()" filled_dict.values() # => [3, 2, 1] # Note - Same as above regarding key ordering. # Get all key-value pairs as a list of tuples with "items()" filled_dict.items() # => [("one", 1), ("two", 2), ("three", 3)] # Check for existence of keys in a dictionary with "in" "one" in filled_dict # => True 1 in filled_dict # => False # Looking up a non-existing key is a KeyError filled_dict["four"] # KeyError # Use "get()" method to avoid the KeyError filled_dict.get("one") # => 1 filled_dict.get("four") # => None # The get method supports a default argument when the value is missing filled_dict.get("one", 4) # => 1 filled_dict.get("four", 4) # => 4 # note that filled_dict.get("four") is still => None # (get doesn't set the value in the dictionary) # set the value of a key with a syntax similar to lists filled_dict["four"] = 4 # now, filled_dict["four"] => 4 # "setdefault()" inserts into a dictionary only if the given key isn't present filled_dict.setdefault("five", 5) # filled_dict["five"] is set to 5 filled_dict.setdefault("five", 6) # filled_dict["five"] is still 5 # Sets store ... well sets (which are like lists but can contain no duplicates) empty_set = set() # Initialize a "set()" with a bunch of values some_set = set([1, 2, 2, 3, 4]) # some_set is now set([1, 2, 3, 4]) # order is not guaranteed, even though it may sometimes look sorted another_set = set([4, 3, 2, 2, 1]) # another_set is now set([1, 2, 3, 4]) # Since Python 2.7, {} can be used to declare a set filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4} # Add more items to a set filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5} # Do set intersection with & other_set = {3, 4, 5, 6} filled_set & other_set # => {3, 4, 5} # Do set union with | filled_set | other_set # => {1, 2, 3, 4, 5, 6} # Do set difference with - {1, 2, 3, 4} - {2, 3, 5} # => {1, 4} # Do set symmetric difference with ^ {1, 2, 3, 4} ^ {2, 3, 5} # => {1, 4, 5} # Check if set on the left is a superset of set on the right {1, 2} >= {1, 2, 3} # => False # Check if set on the left is a subset of set on the right {1, 2} <= {1, 2, 3} # => True # Check for existence in a set with in 2 in filled_set # => True 10 in filled_set # => False 10 not in filled_set # => True # Check data type of variable type(li) # => list type(filled_dict) # => dict type(5) # => int #################################################### # 3. Control Flow #################################################### # Let's just make a variable some_var = 5 # Here is an if statement. Indentation is significant in python! # prints "some_var is smaller than 10" if some_var > 10: print "some_var is totally bigger than 10." elif some_var < 10: # This elif clause is optional. print "some_var is smaller than 10." else: # This is optional too. print "some_var is indeed 10." """ For loops iterate over lists prints: dog is a mammal cat is a mammal mouse is a mammal """ for animal in ["dog", "cat", "mouse"]: # You can use {0} to interpolate formatted strings. (See above.) print "{0} is a mammal".format(animal) """ "range(number)" returns a list of numbers from zero to the given number prints: 0 1 2 3 """ for i in range(4): print i """ "range(lower, upper)" returns a list of numbers from the lower number to the upper number prints: 4 5 6 7 """ for i in range(4, 8): print i """ While loops go until a condition is no longer met. prints: 0 1 2 3 """ x = 0 while x < 4: print x x += 1 # Shorthand for x = x + 1 # Handle exceptions with a try/except block # Works on Python 2.6 and up: try: # Use "raise" to raise an error raise IndexError("This is an index error") except IndexError as e: pass # Pass is just a no-op. Usually you would do recovery here. except (TypeError, NameError): pass # Multiple exceptions can be handled together, if required. else: # Optional clause to the try/except block. Must follow all except blocks print "All good!" # Runs only if the code in try raises no exceptions finally: # Execute under all circumstances print "We can clean up resources here" # Instead of try/finally to cleanup resources you can use a with statement with open("myfile.txt") as f: for line in f: print line #################################################### # 4. Functions #################################################### # Use "def" to create new functions def add(x, y): print "x is {0} and y is {1}".format(x, y) return x + y # Return values with a return statement # Calling functions with parameters add(5, 6) # => prints out "x is 5 and y is 6" and returns 11 # Another way to call functions is with keyword arguments add(y=6, x=5) # Keyword arguments can arrive in any order. # You can define functions that take a variable number of # positional args, which will be interpreted as a tuple by using * def varargs(*args): return args varargs(1, 2, 3) # => (1, 2, 3) # You can define functions that take a variable number of # keyword args, as well, which will be interpreted as a dict by using ** def keyword_args(**kwargs): return kwargs # Let's call it to see what happens keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch": "ness"} # You can do both at once, if you like def all_the_args(*args, **kwargs): print args print kwargs """ all_the_args(1, 2, a=3, b=4) prints: (1, 2) {"a": 3, "b": 4} """ # When calling functions, you can do the opposite of args/kwargs! # Use * to expand positional args and use ** to expand keyword args. args = (1, 2, 3, 4) kwargs = {"a": 3, "b": 4} all_the_args(*args) # equivalent to all_the_args(1, 2, 3, 4) all_the_args(**kwargs) # equivalent to all_the_args(a=3, b=4) all_the_args(*args, **kwargs) # equivalent to all_the_args(1, 2, 3, 4, a=3, b=4) # you can pass args and kwargs along to other functions that take args/kwargs # by expanding them with * and ** respectively def pass_all_the_args(*args, **kwargs): all_the_args(*args, **kwargs) print varargs(*args) print keyword_args(**kwargs) # Function Scope x = 5 def set_x(num): # Local var x not the same as global variable x x = num # => 43 print x # => 43 def set_global_x(num): global x print x # => 5 x = num # global var x is now set to 6 print x # => 6 set_x(43) set_global_x(6) # Python has first class functions def create_adder(x): def adder(y): return x + y return adder add_10 = create_adder(10) add_10(3) # => 13 # There are also anonymous functions (lambda x: x > 2)(3) # => True (lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5 # There are built-in higher order functions map(add_10, [1, 2, 3]) # => [11, 12, 13] map(max, [1, 2, 3], [4, 2, 1]) # => [4, 2, 3] filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7] # We can use list comprehensions for nice maps and filters [add_10(i) for i in [1, 2, 3]] # => [11, 12, 13] [x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7] # You can construct set and dict comprehensions as well. {x for x in 'abcddeef' if x in 'abc'} # => {'a', 'b', 'c'} {x: x ** 2 for x in range(5)} # => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16} #################################################### # 5. Classes #################################################### # We subclass from object to get a class. class Human(object): # A class attribute. It is shared by all instances of this class species = "H. sapiens" # Basic initializer, this is called when this class is instantiated. # Note that the double leading and trailing underscores denote objects # or attributes that are used by python but that live in user-controlled # namespaces. You should not invent such names on your own. def __init__(self, name): # Assign the argument to the instance's name attribute self.name = name # Initialize property self.age = 0 # An instance method. All methods take "self" as the first argument def say(self, msg): return "{0}: {1}".format(self.name, msg) # A class method is shared among all instances # They are called with the calling class as the first argument @classmethod def get_species(cls): return cls.species # A static method is called without a class or instance reference @staticmethod def grunt(): return "*grunt*" # A property is just like a getter. # It turns the method age() into an read-only attribute # of the same name. @property def age(self): return self._age # This allows the property to be set @age.setter def age(self, age): self._age = age # This allows the property to be deleted @age.deleter def age(self): del self._age # Instantiate a class i = Human(name="Ian") print i.say("hi") # prints out "Ian: hi" j = Human("Joel") print j.say("hello") # prints out "Joel: hello" # Call our class method i.get_species() # => "H. sapiens" # Change the shared attribute Human.species = "H. neanderthalensis" i.get_species() # => "H. neanderthalensis" j.get_species() # => "H. neanderthalensis" # Call the static method Human.grunt() # => "*grunt*" # Update the property i.age = 42 # Get the property i.age # => 42 # Delete the property del i.age i.age # => raises an AttributeError #################################################### # 6. Modules #################################################### # You can import modules import math print math.sqrt(16) # => 4 # You can get specific functions from a module from math import ceil, floor print ceil(3.7) # => 4.0 print floor(3.7) # => 3.0 # You can import all functions from a module. # Warning: this is not recommended from math import * # You can shorten module names import math as m math.sqrt(16) == m.sqrt(16) # => True # you can also test that the functions are equivalent from math import sqrt math.sqrt == m.sqrt == sqrt # => True # Python modules are just ordinary python files. You # can write your own, and import them. The name of the # module is the same as the name of the file. # You can find out which functions and attributes # defines a module. import math dir(math) # If you have a Python script named math.py in the same # folder as your current script, the file math.py will # be loaded instead of the built-in Python module. # This happens because the local folder has priority # over Python's built-in libraries. #################################################### # 7. Advanced #################################################### # Generators # A generator "generates" values as they are requested instead of storing # everything up front # The following method (*NOT* a generator) will double all values and store it # in `double_arr`. For large size of iterables, that might get huge! def double_numbers(iterable): double_arr = [] for i in iterable: double_arr.append(i + i) return double_arr # Running the following would mean we'll double all values first and return all # of them back to be checked by our condition for value in double_numbers(range(1000000)): # `test_non_generator` print value if value > 5: break # We could instead use a generator to "generate" the doubled value as the item # is being requested def double_numbers_generator(iterable): for i in iterable: yield i + i # Running the same code as before, but with a generator, now allows us to iterate # over the values and doubling them one by one as they are being consumed by # our logic. Hence as soon as we see a value > 5, we break out of the # loop and don't need to double most of the values sent in (MUCH FASTER!) for value in double_numbers_generator(xrange(1000000)): # `test_generator` print value if value > 5: break # BTW: did you notice the use of `range` in `test_non_generator` and `xrange` in `test_generator`? # Just as `double_numbers_generator` is the generator version of `double_numbers` # We have `xrange` as the generator version of `range` # `range` would return back and array with 1000000 values for us to use # `xrange` would generate 1000000 values for us as we request / iterate over those items # Just as you can create a list comprehension, you can create generator # comprehensions as well. values = (-x for x in [1, 2, 3, 4, 5]) for x in values: print(x) # prints -1 -2 -3 -4 -5 to console/terminal # You can also cast a generator comprehension directly to a list. values = (-x for x in [1, 2, 3, 4, 5]) gen_to_list = list(values) print(gen_to_list) # => [-1, -2, -3, -4, -5] # Decorators # A decorator is a higher order function, which accepts and returns a function. # Simple usage example – add_apples decorator will add 'Apple' element into # fruits list returned by get_fruits target function. def add_apples(func): def get_fruits(): fruits = func() fruits.append('Apple') return fruits return get_fruits @add_apples def get_fruits(): return ['Banana', 'Mango', 'Orange'] # Prints out the list of fruits with 'Apple' element in it: # Banana, Mango, Orange, Apple print ', '.join(get_fruits()) # in this example beg wraps say # Beg will call say. If say_please is True then it will change the returned # message from functools import wraps def beg(target_function): @wraps(target_function) def wrapper(*args, **kwargs): msg, say_please = target_function(*args, **kwargs) if say_please: return "{} {}".format(msg, "Please! I am poor :(") return msg return wrapper @beg def say(say_please=False): msg = "Can you buy me a beer?" return msg, say_please print say() # Can you buy me a beer? print say(say_please=True) # Can you buy me a beer? Please! I am poor


'Deprecated > Python' 카테고리의 다른 글

Python OSX Path 설정  (0) 2023.10.23
간단한 파일 입출력 모듈  (0) 2018.06.12
Numpy array 갖고 놀기  (0) 2018.03.18
numpy.random 함수들  (0) 2018.03.18
Binary to String, String to Binary  (0) 2018.03.09

+ Recent posts